User Tools

Site Tools


google_cloud_platform

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
google_cloud_platform [2019/01/04 16:28]
admin
google_cloud_platform [2019/01/04 16:29] (current)
admin
Line 33: Line 33:
  1. Cloud Machine Learning Engine:用户自己提供算法。在本地機器上進行的機器學習訓練时data的整理和机器的scaling是很麻烦的,GCP可以自动帮忙做这些。  1. Cloud Machine Learning Engine:用户自己提供算法。在本地機器上進行的機器學習訓練时data的整理和机器的scaling是很麻烦的,GCP可以自动帮忙做这些。
  2. Cloud AutoML、Natural Language和Vision等:用户提供Data。  2. Cloud AutoML、Natural Language和Vision等:用户提供Data。
- 3. Cloud Speech-to-Text API、Cloud Video Intelligence等:Google训练完成的。用户不需要提供Data。 ​  + 3. Cloud Speech-to-Text API、Cloud Video Intelligence等:Google训练完成的。用户不需要提供Data。 
-   + 
-###Note +### Note 
-  +
  - Unordered List Item Google Cloud ML使用的 ML frameworks: TensorFlow, scikit-learn,​ XGBoost, Keras.  - Unordered List Item Google Cloud ML使用的 ML frameworks: TensorFlow, scikit-learn,​ XGBoost, Keras.
  - 谷歌自己研发的ML专用芯片 —— TPU:the TPU is on average about 15X-30X faster than its contemporary GPU or CPU, with TOPS/Watt about 30X - 80X higher. Moreover, using the GPU’s GDDR5 memory in the TPU would triple achieved TOPS and raise TOPS/Watt to nearly 70X the GPU and 200X the CPU. [[https://​arxiv.org/​pdf/​1704.04760.pdf]]  - 谷歌自己研发的ML专用芯片 —— TPU:the TPU is on average about 15X-30X faster than its contemporary GPU or CPU, with TOPS/Watt about 30X - 80X higher. Moreover, using the GPU’s GDDR5 memory in the TPU would triple achieved TOPS and raise TOPS/Watt to nearly 70X the GPU and 200X the CPU. [[https://​arxiv.org/​pdf/​1704.04760.pdf]]
google_cloud_platform.1546590531.txt.gz · Last modified: 2019/01/04 16:28 by admin